viernes, 22 de noviembre de 2013

conjetura de Polya


La Conjetura de Pólya

En matemáticas, la conjetura de Pólya es una hipótesis que plantea que la mayoría de los números naturales (más del 50% de ellos) menores que cualquier número dado, tienen una cantidad impar de factores primos. La conjetura fue propuesta por el matemático húngaro George Pólya en 1919, y se demostró su falsedad en 1958. El tamaño del menor contra-ejemplo es usualmente usado para mostrar cómo una conjetura puede ser cierta para muchos números, y aun así ser falsa.



Enunciado

La conjetura de Pólya enuncia que:

Para cualquier n (> 1), si dividimos los números naturales menores o iguales a n (excluyendo el 0) por aquellos que tienen un número impar de factores primos, y si análogamente los dividimos por aquellos que tienen un número par de factores primos, entonces el primer conjunto tiene más elementos que el último, o bien, tienen igual cantidad de elementos.

De manera equivalente, se puede enunciar la conjetura, en términos de la función de Liouville:

 




Para todo n. Aquí, es positivo si el número de factores primos del entero k es par, y negativo si es impar. La función Omega cuenta el total de factores primos de un entero.

Refutación

Nadie pudo dar una demostración de la veracidad o falsedad del enunciado, pero en los años posteriores se comprobó que era cierto para todo n hasta 1.000.000, razón por la cual se pensaba que la conjetura era cierta…Craso error.

Primero Colin Brian Haselgrove encontró el primer error en 1958

En 1962, Lehman encontró un contraejemplo: para n = 906180359 se tiene que I(n) = P(n) – 1, y por tanto:

I(906180359) < P(906180359)

El contraejemplo más pequeño que se conoce es el caso n = 906150257, encontrado por Tanaka en 1980.

Por tanto la conjetura de Polya es falsa.

¿Que nos enseña esto?. Pues muy sencillo: por desgracia en Matemáticas no podemos fiarnos de la intuición ni de lo que ocurre para un número finito de casos, por muy grande que sea ese número. Hasta que un resultado no está comprobado en el caso general no tenemos completa seguridad de que sea cierto.

 

 

No hay comentarios:

Publicar un comentario